RAMAKRISHNA MISSION VIDYAMANDIRA			
(A Residential Autonomous College under University of Calcutta)			
First Year			
First-Semester Examination, December 2010			
Dat	e :	ELECTRONICS (General)	Full Marks : 50
Tim	ie :	10am – 12noon Paper - I	
Answer <u>any five</u> questions : [5×10 = 50			
1.	a) b) c)	Subtract decimal number 25 from 49 using 2's complement method. Starting from the expression $Y = A'B + AB'$, simplify it to draw the circuit by using Ne If the voltage measuring range of a digital voltmeter is 0 to 10V and 16 bit encoding will be the resolution in voltage reading?	• •
2.	a) b) c)	Realize the function $F = \sum m(0, 1, 4, 5, 7)$ using 4:1 MUX. Write the truth table of a full adder and draw the circuit by using NAND gates only. Convert the decimal number 156.7 into BCD.	[4+4+2 = 10]
3.	a)	If $X = ABC + AB'C' + A'BC'$ and $Y = (A'+B'+C')(A'+B+C)(A+B'+C)$; then find t X and Y?	
	b)	What is decoder? Explain the operation of BCD to binary decoder.	[3+(2+5) = 10]
4.	a) b) c)	What is race-around problem for J-K flip-flop? How can it be avoided? Design a circuit that divides a clock to 1/8th of its initial frequency using J-K flip flops. State the difference between latches and flip flop.	[(2+2)+3+3 = 10]
5.	a) b)	Design a counter that counts 0, 2, 4, 3, 9, 10, 13 in this order using all JK flip-flops. Exp What is shift register? Explain the operation of a 4-bit PISO shift register.	blain the operation. $[4+(2+4) = 10]$
6.	a) b) c)	Define Fan-in and Fan-out in digital circuitry. How are the synchronous counters more advantageous than asynchronous counters? Design a 4:1 MUX using NAND gates only.	Explain. (1½×2)+5+2 = 10]

7. a) Design a 16:1 MUX using 4:1 MUXs and basic gates and explain the operation.
b) Illustrate about different uses of MUX and DEMUX. [6+4 = 10]